Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gilbert, Jack A (Ed.)ABSTRACT Bacteria and archaea employ a rudimentary immune system, CRISPR-Cas, to protect against foreign genetic elements such as bacteriophage. CRISPR-Cas systems are found inBombella apis.B. apisis an important honey bee symbiont, found primarily in larvae, queens, and hive compartments.B. apisis found in the worker bee gut but is not considered a core member of the bee microbiome and has therefore been understudied with regard to its importance in the honey bee colony. However,B. apisappears to play beneficial roles in the colony, by protecting developing brood from fungal pathogens and by bolstering their development under nutritional stress. Previously, we identified CRISPR-Cas systems as being acquired byB. apisin its transition to bee association, as they are absent in a sister clade. Here, we assess the variation and distribution of CRISPR-Cas types acrossB. apisstrains. We found multiple CRISPR-Cas types, some of which have multiple arrays, within the sameB. apisgenomes and also in the honey bee queen gut metagenomes. We analyzed the spacers between strains to identify the history of mobile element interaction for eachB. apisstrain. Finally, we predict interactions between viral sequences and CRISPR systems from different honey bee microbiome members. Our analyses show that theB. apisCRISPR-Cas systems are dynamic; that microbes in the same niche have unique spacers, which supports the functionality of these CRISPR-Cas systems; and that acquisition of new spacers may be occurring in multiple locations in the genome, allowing for a flexible antiviral arsenal for the microbe. IMPORTANCEHoney bee worker gut microbes have been implicated in everything from protection from pathogens to breakdown of complex polysaccharides in the diet. However, there are multiple niches within a honey bee colony that host different groups of microbes, including the acetic acid bacteriumBombella apis.B. apisis found in the colony food stores, in association with brood, in worker hypopharyngeal glands, and in the queen’s digestive tract. The roles thatB. apismay serve in these environments are just beginning to be discovered and include the production of a potent antifungal that protects developing bees and supplementation of dietary lysine to young larvae, bolstering their nutrition. Niche specificity inB. apismay be affected by the pressures of bacteriophage and other mobile elements, which may target different strains in each specific bee environment. Studying the interplay betweenB. apisand its mobile genetic elements (MGEs) may help us better understand microbial community dynamics within the colony and the potential ramifications for the honey bee host.more » « lessFree, publicly-accessible full text available July 22, 2026
-
Abstract Mobile genetic elements (MGEs), such as plasmids and bacteriophages, are major contributors to the ecology and evolution of host-associated microbes due to a continuum of symbiotic interactions and by mediating gene flow via horizontal gene transmission. However, while myriad studies have investigated relationships between MGEs and variation in fitness among microbial and eukaryotic hosts, few studies have incorporated this variation into the context of MGE evolution and ecology. Combining HiC-resolved metagenomics with the model honey bee worker gut microbiome, we show that the worker gut contains a dense, nested MGE community that exhibits a wide degree of host range variation among microbial hosts. Using measures of gene similarity and syntenty, we show that plasmids likely mediate gene flow between individual honey bee colonies, though these plasmids exhibit broad host range variation within their individual microbiomes. We further show that phage-microbe networks exhibit high variation among individual metagenomes, and that phages show broad host range with respect to both the number and phylogenetic distance of their hosts. Finally, we provide evidence that measures of nucleotide variation positively correlate with host range in bee-associated phages, and that functional targets of diversifying selection are partitioning differently between broad or narrow host range phages. Our work underscores the variability of MGE x microbial interactions within host-associated microbial communities and highlights the genomic variation associated with MGE host range diversity.more » « lessFree, publicly-accessible full text available February 6, 2026
An official website of the United States government
